Veraticus

joined 2 years ago
MODERATOR OF
[–] [email protected] 1 points 2 years ago

Yeah, that would be a good usage of an LLM!

[–] [email protected] 1 points 2 years ago (5 children)

You used the term and I was using it with the same usage you were. Why are you quibbling semantics here? It doesn’t change the point.

[–] [email protected] 0 points 2 years ago* (last edited 2 years ago) (16 children)

We do understand how the math results in LLMs. Reread what I said. The neural network vectors and weights are too complicated to follow for an individual, and do not relate on a 1:1 mapping with the words or sentences the LLM was trained on or will output, so individuals cannot deduce the output of an LLM easily by studying its trained state. But we know exactly what they’re doing conceptually, and individually, and in aggregate. Read your own sources from your previous post, that’s what they’re telling you.

Concepts are indeed abstract but LLMs have no concepts in them, simply vectors. The vectors do not represent concepts in anything close to the same way that your thoughts do. They are not 1:1 with objects, they are not a “thought,” and anyway there is nothing to “think” them. They are literally only word weights, transformed to text at the end of the generation process.

Your concept of a chair is an abstract thought representation of a chair. An LLM has vectors that combine or decompose in some way to turn into the word “chair,” but are not a concept of a chair or an abstract representation of a chair. It is simply vectors and weights, unrelated to anything that actually exists.

That is obviously totally different in kind to human thought and abstract concepts. It is just not that, and not even remotely similar.

You say you are familiar with neural networks and AI but these are really basic underpinnings of those concepts that you are misunderstanding. Maybe you need to do more research here before asserting your experience?

Edit: And in relation to your links -- the vectors do not represent single words, but tokens, which indeed might be a whole word, but could just as well be part of a word or an entire phrase. Tokens do not represent the meaning of a word/partial word/phrase, just the statistical use of that word given the data the word was found in. Equating these vectors with human thoughts oversimplifies the complexities inherent in human cognition and misunderstands the limitations of LLMs.

[–] [email protected] 2 points 2 years ago* (last edited 2 years ago)

No, they learn English (or any other language) from humans. Translation requires a Rosetta Stone and LLMs are still much worse at such tasks than dedicated translation programs.

Edit: I guess if you are suggesting that the LLM could become an LLM of the dead language and communicate only in said dead language, that is indeed possible. Since users would need to speak that dead language to communicate with it though I don’t understand the utility of such a thing (and is certainly not what the author meant anyway).

[–] [email protected] 1 points 2 years ago (7 children)

LLMs do not grow up. Without training they don’t function properly. I guess in this aspect they are similar to humans (or dogs or anything else that benefits from training), but that still does not make them intelligent.

[–] [email protected] 8 points 2 years ago (9 children)

LLMs can't do any of those things though...

If no one teaches them how to speak a dead language, they won't be able to translate it. LLMs require a vast corpus of language data to train on and, for bilingual translations, an actual Rosetta stone (usually the same work appearing in multiple languages).

This problem is obviously exacerbated quite a bit with animals, who, definitionally, speak no human language and have very different cognitive structures to humans. It is entirely unclear if their communications can even be called language at all. LLMs are not magic and cannot render into human speech something that was never speech to begin with.

The whole article is just sensationalism that doesn't begin to understand what LLMs are or what they're capable of.

[–] [email protected] 0 points 2 years ago* (last edited 2 years ago) (24 children)

Large language models by themselves are “black boxes”, and it is not clear how they can perform linguistic tasks. There are several methods for understanding how LLM work.

You are misunderstanding both this and the quote from Anthropic. They are saying the internal vector space that LLMs use is too complicated and too unrelated to the output to be understandable to humans. That doesn't mean they're having thoughts in there: we know exactly what they're doing inside that vector space -- performing very difficult math that seems totally meaningless to us.

Is this not what word/sentence vectors are? Mathematical vectors that represent concepts that can then be linked to words/sentences?

The vectors do not represent concepts. The vectors are math. When the vectors are sent through language decomposition they become words, but they were never concepts at any point.

[–] [email protected] 3 points 2 years ago (7 children)

What a silly assertion. Eliza was simulating conversations in the 80s; it was no more intelligent than the current crop of chatbots.

[–] [email protected] 2 points 2 years ago (26 children)

But also, can you define what intelligence is?

From the Encyclopedia Britannica:

Human intelligence is a mental quality that consists of the abilities to learn from experience, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one’s environment.

In no sense do LLMs do any of these except, perhaps, "understand and handle abstract concepts." But since they themselves have no understanding of the concepts, and merely generate text that can simulate understanding, I would call that a stretch.

Are you sure it isn’t whatever LLMs are doing under the hood, deep in hidden layers?

Yes. LLMs are not magic, they are math, and we understand how they work. Deep under the hood, they are manipulating mathematical vectors that in no way are connected representationally to words. In the end, the result of that math is reapplied to a linguistic model and the result is speech. It is an algorithm, not an intelligence.

I'm not really interested in papers that either don't understand LLMs or play word games with intelligence (shockingly, solipsism is an easy point of view to believe if you just ignore all evidence). For every one of these, you can find a dozen that correctly describe ChatGPT and its limitations. Again, including ChatGPT itself. Why not believe those instead of cherry-pick articles that gratify your ego?

[–] [email protected] 1 points 2 years ago (10 children)

It's not from scratch, it's seeded and trained by humans. That is the intelligence.

[–] [email protected] -1 points 2 years ago (2 children)

LLMs do not think or feel or have internal states. With the same random seed and the same input, GPT4 will generate exactly the same output every time. Its speech is the result of a calculation, not of intelligence or self-direction. So, even if intelligence can be described by an algorithm, LLMs are not that algorithm.

[–] [email protected] 1 points 2 years ago (40 children)

In what sense does your link say otherwise? Is a world model the same thing as intelligence?

view more: ‹ prev next ›