this post was submitted on 24 Jun 2025
315 points (98.2% liked)
Science Memes
15438 readers
1661 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Funny thing there is actually attempts at modeling uncertainty in Deep Learning. But they are rarely used because they are either super inaccurate or have super slow convergence. (MCMC, Bayesian neural networks) The problem is essentially that learning algorithms cannot properly integrate over certainty distributions, so only an approximation can be trained, which is often pretty slow.
if they existed they'd be killer for RL. RL is insanely unstable when the distribution shifts as the policy starts exploring different parts of the state space. you'd think there'd be some clean approach to learning P(Xs|Ys) that can handle continuous shift of the Ys distribution in the training data, but there doesn't seem to be. just replay buffers and other kludges.